SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE) Subject with Code:** Digital Logic Design (20CS0503) Course & Branch: B.Tech – CSE, CSIT, CSM, CIC Year &Sem: I-B.Tech& II-Sem **Regulation:** R20 UNIT-I **BINARY SYSTEMS & BOOLEAN ALGEBRA** 1 a)Convert the following numbers [L5][CO1] **6M** i) $(41.6875)_{10}$ to Hexadecimal number ii)(11001101.0101)₂to base-8 andbase-4 b) Subtract $(111001)_2$ from (101011) using 2's complement? [L5][CO1] **6**M 2 a) Convert the following numbers [L5][CO1] **3**M i) (AB)₁₆=(ii) $(1234)_8 = ()_{16}iii)(101110.01)_2 = ()_8$)2 b)Convert the following to binary and then to gray code $(AB33)_{16}$ [L5][CO1] **4M** c) Perform the following Using BCD arithmetic (7129) $_{10}$ + (7711) $_{10}$ [L5][CO1] **5**M 3 Explain the Binary codes with examples? 12M [L2][CO1] Explain about complements with examples? 4 [L2][CO1] **12M** 5 Convert the following [L6][CO1] **12M** a) $(1AD)_{16}=()_{10}$ b) $(453)_8=()_{10}$ c) $(10110011)_2=()_{10}$ d) $(5436)_{10}=()_{16}$ 6 Prove the following identities: [L5][CO1] **6M** (i) A' B' C' + A' B C' + A B' C' + A B C' = C'. (ii) A B + A B C + A' B + A B' C = B + A C. [L5][CO1] 6M 7 Reduce the following Boolean Expressions to the indicated number of literals: a) A'C'+ABC+AC'+AB to three literals. [L6][C01] 4Mb) (X'Y'+Z)'+Z+XY+WZ to three literals. [L6][CO1] **4M** c) A'B (D'+C'D)+B(A+A'CD) to one literal. [L6][C01] 4M8 a)Simplify the Boolean expressions to minimum number of literals [L6][CO1] **6**M i) X' + XY + XZ' + XYZ'ii) (X+Y)(X+Y') b) Obtain the Complement & Dual of Boolean Expression [L5][CO1] **6**M i)A+B+A'B'C ii) AB + A (B + C) + B'(B+D)9 a) Express the Boolean function F=A+B'C as a sum of min terms. [L1][CO1] **6M** b) Convert the given expression in standard POS form: [L6][CO1] **6M** Y=A(A+B+C)a) Convert the given expression in standard POS form: 10 [L6][CO1] **6**M Y = (A + B) (B + C) (A + C).b) Convert the following numbers [L6][CO1] **6M** i) $(615)_{10} = ()_{16}$ ii) $(214)_{10} = ()_8$ iii) $(0.8125)_{10} = ()_2$ iv) $(658.825)_{10} = ()_8 v (54)_{10} = ()_2$

<u>UNIT –II</u>

GATE LEVEL MINIMIZATION

1	Simplify the following Boolean expression using K-MAP and implement using NAND gates. F(W,X,Y,Z)=XYZ+WXY+WYZ+WXZ	[L6][CO1]	12M
2	Simplify the Boolean expression using K-MAP	[L6][CO5]	12M
	$F(A,B,C,D) = \sum m(1,2,3,8,9,10,11,14) + d(7,15)$		
3	Simplify the Boolean expression using K-map and implement	[L6][CO1]	12M
	$F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14)$		
4	Reduce the expression	[L6][CO5]	12M
F	$f(x,y,z,w) = \pi M(0,2,7,8,9,10,11,15) .d (3,4) using K-Map?$		1014
3	Simplify the Boolean expression using K-map?		1211
	$F(A,B,C,D,E) = \sum m(0,1,4,5,16,17,21,25,29)$		
6	Simplify the following expressions, and implement them	[L6][CO5]	12M
	with two-level NAND gate circuits:		
	a) $AB' + ABD + ABD' + A'C'D' + A'BC'$		
	b) $BD + BCD' + AB'C'D'$		
7	Explain NAND-NOR implementations?	[L2][CO1]	12M
8	a) Design the circuit by Using NAND gates $E = \Delta BC' + DE + \Delta B'D'$	[L6][CO5]	6M
	b) Design the circuit by Using NOR gates	[L6][CO5]	6M
	F = (X+Y).(X'+Y'+Z')		
9	Simplify the Boolean expression using K-MAP	[L6] [CO1]	12M
	$F(A,B,C,D,E) = \sum m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$		
10	Simplify the Boolean expressionusing K-MAP	[L6][CO5]	12M
	$F(A,B,C,D) = \pi M (3,5,6,7,11,13,14,15).d(9,10,12)$		

<u>UNIT –III</u>

COMBINATIONAL LOGIC

1	Draw and explain the working of a Carry- Look ahead adder?	[L2][CO2]	12M
2	a)Implement the following Boolean function using 8:1 multiplexer	[L5][CO5]	6M
	F(A, B, C, D) = A'BD' + ACD + A'C' D + B'CD		
	b) Explain about parallel adder?	[L2][CO2]	6M
3	a)Explain Design Procedure of combinational circuits?	[L2][CO2]	6M
	b) Explain Full binary subtractor in detail?	[L2][CO2]	6M
4	Design the combinational circuit binary to graycode?	[L5][CO2]	12M
5	a) Explain about Binary Half Adder?	[L2] [CO2]	6M
	b) Design and draw a full adder circuit.	[L5][CO2]	6M
6	a)Implement the following Boolean function using 8:1	[L5][CO5]	6M
	multiplexer		
	$F(A,B,C.D) = \Sigma M(0,1,2,5,7,8,9,14,15)$		
	b) Explain about Decimal Adder?	[L2][CO2]	6M
7	a) Design a 4 bit adder-subtractor circuit and explain the operation in detail?	[L5][CO2]	6M
	b) Explain the functionality of a Multiplexer?	[L2][CO2]	6M
8	Implement BCD to 7-segment decoder for common anode using 4:16 decoder?	[L5][CO5]	12M
9	a) Design a 4 bit binary parallel subtractor and the explain operation in detail?	[L5][CO2]	6M
	b) Design the combinational circuit of Binary to Excess-3 code convertor?	[L5] [CO2]	6M
10	a)What is combinational circuits and explain analysis and design procedure of combinational circuits.	[L1][CO2]	6M
	b) Explain about Priority encoder?	[L2][CO2]	6M

<u>UNIT –IV</u>

SYNCHRONOUS SEQUENTIAL LOGIC

1	a) Explain the Logic diagram of JK flip-flop?	[L2][CO2]	6M
	b) Write difference between Combinational & Sequential circuits?	[L5] [CO4]	6M
2	a) Explain the Logic diagram of SR flip-flop?	[L2] [CO2]	6M
	b) Design and draw the 3 bit up-down synchronous counter?	[L5] [CO2]	6M
3	a) Draw and explain the operation of D Flip-Flop?	[L2] [CO4]	6M
	b) Explain about Shift Registers?	[L2] [CO4]	6M
4	a) Draw and explain the operation of T Flip-Flop?	[L5] [CO2]	6M
	b) Explain about Ring counter?	[L2] [CO4]	6M
5	a) Explain about ripple counter?	[L2][CO2]	6M
	b)What is state assignment? Explain with a suitable example?	[L1][CO4]	6M
6	Explain the working of the following	[L2 ,L5]	12M
	i)J-Kflip-flop	[CO2]	
	ii) S- Rflip-flop		
	iii) Dflip-flop		
7	Explain the design of a 4 bit binary counter with parallel load in detail?	[L2][CO4]	12M
8	What is race-around condition? How its eteliminate does is a Master–slave J-K flip-flop?	[L1] [CO4]	12M
9	a) Explain synchronous and ripple counters compare their merits and demerits?	[L2][CO2]	6M
	b) Design a 4 bit binary synchronous counter with D-flipflop?	[L5] [CO2]	6M
10	a) Write the truth table of clocked T- FlipFlop?	[L1][CO2]	4M
	b) Write the differences between latches and flip flops?	[L1] [CO2]	4M
	c) Write the differences between synchronous and asynchronous counters?	[L1][CO4]	4 M

<u>UNIT –V</u>

MEMORY AND PROGRAMMABLE LOGIC

1	Explain about Error correction & Detection Codes with examples?	[L2][CO6]	12M
2	 a) Write short notes on PLA b) Implement the following Boolean function using PLA: F1(A,B,C)=Σm(3,5,6,7) F2(A,B,C)=Σm(0,2,4,7) 	[L5] [CO6] [L5][CO6]	4M 8M
3	Implement the following function using PLA $A(x,y,z)=\sum m(1,2,4,6)$ $B(x,y,z)=\sum m(0,1,6,7)$ $C(x,y,z)=\sum m(2,6)$	[L5][CO6]	12M
4	Design a Combinational circuit using PAL by considering the following Boolean Functions given in sum of min terms: $W(A,B,C,D)=\Sigma M(2,12,13)$ $X(A,B,C,D)=\Sigma m(7,8,9,10,11,12,13,14,15)$ $Y(A,B,C,D)=\Sigma (0,2,3,4,5,6,7,8,10,11,15)$ $Z(A,B,C,D)=\Sigma (1,2,8,12,13)$	[L5][CO6]	12M
5	What is memory decoding? Explain about the construction of 4 X 4 RAM?	[L1,L2][CO3]	12M
6	Construct the PROM using the conversion from BCD code to Excess- 3code?	[L3] [CO3]	12M
7	Implement the following functions using PLA. $A(x,y,z)=\sum m(1,2,4,6)B(x,y,z)=\sum m(0,1,6,7)c(x,y,z)=\sum m(2,6)$	[L5][CO6]	12M
8	Construct the PLA using the conversion from BCD code to Excess-3code?	[L3] [CO3]	12M
9	 a)Write difference between PROM ,PLA&PAL? b) Implement the following Boolean expressions using ROM F1(A,B,C)=Σ(m(0,2,4,7)) F2(A,B,C)=Σm(1,3,5,7) 	[L5][CO6] [L5][CO6]	6M 6M
10	a)What is ROM? List the different types of ROMs. b) Implement following Boolean functions using PLA $F1(A,B,C)=\Sigma m(0,1,3,5)$ and $F2(A,B,C)=\Sigma m(0,3,5,7)$	[L1] [CO6] [L5][CO6]	6M 6M